Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(32): 4235-4243, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714309

RESUMO

Blebbistatin is a potent and specific inhibitor of the motor functions of class II myosins, including striated muscle myosin and nonmuscle myosin-2 (NM2). However, the blebbistatin inhibition of NM2c has not been assessed and remains controversial with respect to its efficacy with smooth muscle myosin (SmM), which is highly homologous to NM2. To clarify these issues, we analyzed the effects of blebbistatin on the motor activities of recombinant SmM and three NM2s (NM2a, -2b, and -2c). We found that blebbistatin potently inhibits the actin-activated ATPase activities of SmM and NM2s with following IC50 values: 6.47 µM for SmM, 3.58 µM for NM2a, 2.30 µM for NM2b, and 1.57 µM for NM2c. To identify the blebbistatin-resistant myosin-2 mutant, we performed mutagenesis analysis of the conserved residues in the blebbistatin-binding site of SmM and NM2s. We found that the A456F mutation renders SmM and NM2s resistant to blebbistatin without greatly altering their motor activities or phosphorylation-dependent regulation, making A456F a useful mutant for investigating the cellular function of NM2s.


Assuntos
Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Miosina não Muscular Tipo IIB/antagonistas & inibidores , Miosina não Muscular Tipo IIB/química , Miosinas de Músculo Liso/antagonistas & inibidores , Miosinas de Músculo Liso/química , Substituição de Aminoácidos , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Humanos , Camundongos , Mutação de Sentido Incorreto , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(47): E7448-E7455, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27815532

RESUMO

Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , Miosinas de Músculo Liso/antagonistas & inibidores , Miosinas de Músculo Liso/química , Actinas/metabolismo , Sítio Alostérico , Animais , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ligação Proteica/efeitos dos fármacos , Ratos
3.
Biophys J ; 108(3): 622-31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650929

RESUMO

Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 µm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.


Assuntos
Difosfato de Adenosina/farmacologia , Fosfatos/farmacologia , Miosinas de Músculo Liso/antagonistas & inibidores , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Galinhas , Simulação por Computador , Cinética , Modelos Biológicos , Movimento , Miosinas de Músculo Liso/metabolismo
4.
PLoS One ; 7(5): e36302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563487

RESUMO

OBJECTIVE: Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension. MATERIALS AND METHODS: Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline. RESULTS: CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%). CONCLUSION: Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Miosinas de Músculo Liso/antagonistas & inibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animais , Relação Dose-Resposta a Droga , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Feminino , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Técnicas In Vitro , Monocrotalina , Nitroprussiato/farmacologia , Piperazinas/farmacologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Purinas/farmacologia , Ratos , Citrato de Sildenafila , Sulfonas/farmacologia , Suínos , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...